…start using R, from scratch!

Some time ago, since I was able to use R by myself, have found some fellows and other people who wanted to learn R as well. Then I pointed them to help pages, to CRAN repositories… but in some cases they said that didn’t know how to start using those resources. Obviously, the main self-perceived limitation for non-programmers is the use of “commands” -ok, many of the 80’s kids will remember the use of some command lines to access games such as PacMan, Frogger… :).

At the same time, they also wanted to refresh some basic statistics, acquiring a general knowledge of their data before asking for a statistician’s help. An idea to quickly help them was to make some scripts to guide them through basic commands, seeing results on real-time, and being able to recycle them for their own data.

If you have just started using R, maybe they can be useful for you. However, I will recommend that you use some open “plain text” file(s) to paste your favorite commands and clone/modify them to suit your needs. Remember to store the files where you can access them later!

  • Tip: you can change the extension of your mytext.txt file into mytext.R file, telling Windows to open it with the Notepad again. It will be also a plain text document, but some text editors will recognize it as an “R script” and will highlight the content according to that.
  • Apart from the Notepad in Windows, you also have a bunch of other text/code editors which are more pleasant to use. See for example R-studio and Notepad ++.

Copy the Gists below into your own text files, and begin playing with R!

heatmaps with p-values (2)… coloured according to odds ratio

I like heatplots with p-values -or frequencies, or whatever-. Not very conclusive, but pretty anyway. And when talking about graphs, pretty will make our neurons to fire in more interesting ways: neurons like “pretty” graphs. Moreover, observing your data can be as important as analysing it. It’s better to observe, to listen your patients than making tests without knowing very much about them…

In the heatmaps of the previous post, not a lot of information can be included. Maybe could be useful to write in the tiles the actual p-values, the residuals, or the odds ratios (OR) of the significant crossings (take a look at this solution with ggplot2)…

But one little tweak can be done to make a more informative plot: different color scales for crossed factors with OR less than 1 (cold), and other scale for ORs more than 1 (hot).

To start, we’ll use the same pevious database:

library(plyr)
library(ggplot2)
library(scales)
library(reshape)

 

gender <- c(
"1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1",
"2", "2", "1", "2", "1", "2", "2", "1", "1", "1", "2", "1", "2", "2", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1",
"1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "2", "1", "1", "2", "2", "2", "1", "2", "1", "2", "1", "1", "1", "1", "2", "2", "2", "2", "2", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2",
"1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "2", "1", "2", "2", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2",
"2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "2", "1", "1",
"1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "2",
"1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "2", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "2", "2", "1", "2", "2", "2", "2", "1", "2", "1", "1", "2")

var2 <- c(
"0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0",
"1", "1", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0")

var3 <- c(
"0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1",
"0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "0", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0",
"0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0",
"1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0",
"1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0")

var4 <- c(
"0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1",
"1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0",
"0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "1", "1",
"1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1",
"0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1",
"1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1",
"0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "0", "1", "1", "1",
"1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1",
"1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0")

var5 <- c(
"0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0",
"1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0",
"1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1",
"0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1",
"0", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0",
"0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1",
"1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1",
"1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0")

var6 <- c(
"1", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "0", "0", "0", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "1", "1", "1", "1", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0")

corfac <- data.frame(gender,var2,var3,var4,var5,var6)
summary(corfac)
head(corfac) # see the first rows of the data matrix
class(corfac)

Then, we will make the same “square” template:

combos <- expand.grid(rep(list(1:ncol(corfac)), 2 )) # combinations with repetitions
combos <- as.matrix(combos)
combos <- t(combos) # transpose matrix

Now, the code to fill the template will change, to include a column named OR:

mat1 <- adply(combos, 2, function(x) {
test <- chisq.test(corfac[, x[1]], corfac[, x[2]])
.Table <- xtabs(~ corfac[, x[1]] + corfac[, x[2]], data=corfac)
Odds.r <- (.Table[1]/.Table[3])/(.Table[2]/.Table[4])
out <- data.frame("Row" = colnames(corfac)[x[1]]
, "Column" = colnames(corfac[x[2]])
, "Chi.Square" = round(test$statistic,8)
, "df" = test$parameter
, "p.value" = round(test$p.value, 3)
, "OR" = Odds.r
)
return(out)
})
head(mat1)

We have a matrix with all the crossings. We have also information about the OR value for each association. How can we translate this to colors?. Because in the final matrix only p-values will be allowed, I thought of signs in p-values to be the markers. The crossings with ORs < 1, would have p-values with a minus sign.

I have not been able to complete this steps in a better way. Maybe my code should be improved, but it works:

First of all, we create a “dummy factor” (mat1$or.sign) with strings corresponding to the future signs in the p-values. At the same time, we’ll be able to get rid of all the NAs that surely appeared in the matrix, in the OR column (not in this case, fortunately).

mat1$or.sign[mat1$OR < 1] <- "neg"
mat1$or.sign[mat1$OR >= 1] <- "pos"
mat1$or.sign[is.na(mat1$or.sign)] <- "pos" # solves problem of OR = NA
summary(mat1)
head(mat1)

Second, all p-values = 0 are a problem here (no signs can be added). We will transform zeroes to very little numbers, like:

mat1$p.value[mat1$p.value==0] <- 0.00001

We will create a column that contains all the p-values, but with negative sign:

mat1$p.value.neg <- mat1$p.value - 2*mat1$p.value

After that, we can create the “definitive” p-value column, where the sign corresponds to the value in “mat1$or.sign”. If you get any errors, you can pass the same commands again…

mat1$p.value.sign[which(mat1$or.sign=="pos")] <- mat1$p.value[which(mat1$or.sign=="pos")]
mat1$p.value.sign[which(mat1$or.sign=="neg")] <- mat1$p.value.neg[which(mat1$or.sign=="neg")]

Now the data is almost ready!

Just a ggplot2 example…

library(scales)

q <- ggplot(mat1, aes(Row, Column, fill = p.value.sign)) +
geom_tile(colour="gray80") +
theme_bw(10) +
xlab("Factors") + ylab("Factors") +
scale_fill_gradient2(low = muted("darkblue"), mid = "white", high = muted("red"),
midpoint = 0, space = "Lab", na.value = "grey10", guide = "colourbar", limits=c(-0.049, 0.049))
q + theme(axis.text.x = element_text(angle = 90, hjust = 1))

heatmap_ggplot_posneg

And below is my favourite representation because of the clustering and the great result/readability with simple colors (I don’t find easy to distinguish very small changes in tone/hue, or I need another screen).

First, we have to reshape the data:

matz <- mat1[,c(2,3,10)]
head(matz)
mat2df <- cast(matz, Row~Column)
mat2 <- as.matrix(mat2df)
head(mat2)

And then:

library(gplots)

myCol <- c("gray15", "gray25", "blue", "green", "yellow", "orange", "gray25", "gray15")
# Defining breaks for the color scale
myBreaks <- c(-1, -0.06, -0.05, -0.001, 0, 0.001, 0.05, 0.06, 1)
# pdf("result_heatmap.pdf", width = 30, height = 30)

hm <- heatmap.2(mat2, scale="none", Rowv=T, Colv=T,
col = myCol, ## using your colors
breaks = myBreaks, ## using your breaks
#                 dendrogram = "none",  ## to suppress warnings
margins=c(8,8), cexRow=0.8, cexCol=0.8, key=FALSE, keysize=1.5,
trace="none")
legend("topleft", fill = myCol, cex=0.6,
legend = c(">0.6", "0.6 to 0.05", "0.049 to 0.001 (OR <1)", "0.001 to 0 (OR <1)", "0 to 0.001 (OR >1)", "0.001 to 0.049 (OR >1)", "0.05 to 0.6", ">0.6"))

heatmap_gplots_posneg

… ridiculously photogenic factors (heatmap with p-values)

Some months ago, I had to explore a vast amount of categorical variables before making some multivariate analyses.

One good way to know your raw data, to make new hypotheses…etc, is to calculate some pairwise “crude” chi-square tests of independence of your factors, but it can be very time-consuming.

I mean, not time-consuming to make the tests (with a simple command it can be done), but to revise all of them. My memory (not R’s)  failed after 10 tests, and I had 22 factors…

Now that I have a bit more experience in R cooking, I tried to put in practice one idea: what if I could look at all of these p-values at a glance? Inmediately thought of a plot.

What kind…of…plot? Inmediately thought of HEATMAPS. Why? If I managed to get my p-values (alpha errors) in a matrix, a heatmap could help me to rapidly identify significant ones, or even make clusters of significant associations. Although it cannot lead to formal conclusions, a heatmap could be very helpful.

Here is how I could print a heatmap made of p-values. First of all, let’s construct some data (post inspired in this one):

library(plyr)
library(ggplot2)
library(scales)
library(reshape)

 

gender <- c(
"1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1",
"2", "2", "1", "2", "1", "2", "2", "1", "1", "1", "2", "1", "2", "2", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1",
"1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "2", "1", "1", "2", "2", "2", "1", "2", "1", "2", "1", "1", "1", "1", "2", "2", "2", "2", "2", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2",
"1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "2", "1", "2", "2", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2",
"2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "2", "1", "1",
"1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "2",
"1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "2", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "2", "2", "1", "2", "2", "2", "2", "1", "2", "1", "1", "2")

var2 <- c(
"0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0",
"1", "1", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0")

var3 <- c(
"0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1",
"0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "0", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0",
"0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0",
"1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0",
"1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0")

var4 <- c(
"0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1",
"1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0",
"0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "1", "1",
"1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1",
"0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1",
"1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1",
"0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "0", "1", "1", "1",
"1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1",
"1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0")

var5 <- c(
"0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0",
"1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0",
"1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1",
"0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1",
"0", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0",
"0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1",
"1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1",
"1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0")

var6 <- c(
"1", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "0", "0", "0", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "1", "1", "1", "1", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0")

corfac <- data.frame(gender,var2,var3,var4,var5,var6)
summary(corfac)
class(corfac)

Now, we have our little database, in a data frame. However, for constructing a heatplot data needs to undergo some transformations:

Template of a half (triangular) matrix -> matrix with NAs:

combos <- combn(ncol(corfac),2) # combinations without repetitions

Template of a full (square) matrix -> recommended option:

combos <- expand.grid(rep(list(1:ncol(corfac)), 2 )) # combinations with repetitions
combos <- as.matrix(combos)
combos <- t(combos) # transpose matrix

Once made a template, this code will compute p-values pairwise, following the pattern in combos, until the matrix is filled:

mat1 <- adply(combos, 2, function(x) {
test <- chisq.test(corfac[, x[1]], corfac[, x[2]])

out <- data.frame("Row" = colnames(corfac)[x[1]]
, "Column" = colnames(corfac[x[2]])
, "Chi.Square" = round(test$statistic,3)
,  "df"= test$parameter
,  "p.value" = round(test$p.value, 3)
)
return(out)
})

And now, some fun! here’s the first heatmap you can make with this data:

ggplot(mat1, aes(Row, Column, fill = p.value)) +
geom_tile(colour="gray80") +
theme_gray(8) +
scale_fill_gradient2(low = muted("blue"), mid = "white", high = muted("red"),
midpoint = 0.04, space = "Lab", na.value = "grey50", guide = "colourbar")

heatmap_ggplot

If we want to go further, and do some clustering on your heatmap, you have to continue modifying the database (only possible with the “square” matrix, not with the “triangular”):

CLUSTERED HEATPLOT

First of all, let’s use the great reshape package, to do the following:

Select he columns of interest

matz <- mat1[,c(2,3,6)]
head(matz)

Cast the matrix to have variable names as row names and column names

mat2df <- cast(matz, Row~Column) # Eureka!
mat2 <- as.matrix(mat2df)
head(mat2)

The matrix is ready!

Now, choose a package you like to plot your heatmap in:

My favourite, using heatmap.2:

library(gplots)

# Defining breaks for the color scale
myCol <- c("yellow", "orange", "red", "gray20", "gray15")
myBreaks <- c(0, 0.001, 0.01, 0.05, 0.8, 1)
hm <- heatmap.2(mat2, scale="none", Rowv=T, Colv=T,
col = myCol, ## using your colors
breaks = myBreaks, ## using your breaks
#                 dendrogram = "none",  ## to suppress warnings
margins=c(5,5), cexRow=0.7, cexCol=0.7, key=FALSE, keysize=1.5,
trace="none")

legend("topleft", fill = myCol, cex=0.9,
legend = c("0 to 0.001", "0.001 to 0.01", "0.01 to 0.05", "0.05 to 0.8", ">0.8"))

heatmap_gplots

Others: Heatplus

# source("http://bioconductor.org/biocLite.R") # select mirror to install
# biocLite("Heatplus") # install Heatplus
library(Heatplus)
reg1 <- regHeatmap(mat2)
plot(reg1)

heatmap_heatplus

Using pheatmap:

library(pheatmap)
pheatmap(mat2)

heatmap_pheatmap

Any suggestions/ tricks, etc, about color picking, or using other type of data for the heatmap (rather than p-values)…? (Some tips using residuals from here, and here some enhancements to correlation heatmaps).